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Abstract-Recently developed mathematical models for turbulent evaporating sprays are described. The 
relative merits of Eulerian and Lagrangian approaches in handling the dispersed phase are discussed. These 
two approaches are evaluated vs reported data for evaporating dilute sprays (in the region z/D 2 SO), 
produced by an air-atomizing injector in a still environment. Results show that both approaches are 
successful in predicting the main features of this type of flow ; however, the Eulerian approach performs 
better. The ignorance of the turbulence effects on the droplet motion is found to lead to significant errors 
when the mean relative velocity becomes comparable to the carrier phase r.m.s. velocity fluctuation. The 
one-size Eulerian treatment yields very comparable results to that of the multi-size treatment when the 
droplet size range is not very wide. Finally, the cost analysis for the two approaches demonstrates that the 
use of the Monte Carlo technique in simulating droplet dispersion is even more expensive than the multi- 

size Eulerian treatment. 

1. INTRODUCTION 

WORK IS currently being conducted in the area of 
mathematical modeling of the pertinent phy- 
sicochemical processes occurring in turbulent reacting 
flows. This effort is needed to further improve current 
gas turbine combustor design methods [l] based on 
state-of-the-art models including turbulence, spray, 
and turbulence/chemistry interaction. This paper 
addresses one important aspect of combustion system 
analysis, the spray evaporation and dispersion mode- 
ling. The Lagrangian and Eulerian approaches for 
handling the liquid droplets are evaluated along with 
a recently developed turbulence model for two-phase 
flows 121. 

In the Lagrangian approach, the evaporating spray 
is represented by a discrete droplet technique in which 
each computational droplet represents a number of 
similar physical droplets [3]. The computational drop- 
lets are treated by solving Lagrangian equations of 
mass, momentum, and energy with a prescribed set of 
initial conditions. The Monte Carlo sampling tech- 
nique [4] is used to calculate spray properties including 
number density, droplet diameter, and mean and 
fluctuating droplet velocity components. 

In the Eulerian approach, the evaporating spray is 
treated as an interacting and interpenetrating con- 
tinuum [S, 61. In this approach the governing equa- 
tions for the two phases are similar to the Navier- 
Stokes equations with some extra source/sink terms. 
To use the Eulerian approach for the sprays, one must 
justify the continuum assumption for the dispersed 
phase as discussed by Batchelor [7] and Lumley [8]. 
For this assumption to be valid, each computational 
element must contain a large number of droplets so 
that statistically averaged properties can be assigned 

to the droplets. The droplet size should be su~ciently 
smaller than the Kolmogoroff microscale, q. More- 
over, the interdroplet distance should be at least an 
order of magnitude smaller than n. Hinze [9] stated 
that the continuum assumption has proven to be 
applicable to situations that do not strictly meet this 
condition. Others (Crowe [lo] and Soo [ 111) showed 
that most practical systems involving gas particle mix- 
tures satisfy the continuum assumption. The Eulerian 
approach to predict two-phase flows was employed 
by a number of researchers including Buckingham 
and Siekhaus [ 121, Pourahmadi and Humphrey [ 131, 
Rizk and ~lghob~hi [14], and ~lghobashi et al. [15]. 
Similarly, the Lagrangian approach has been used by 
El-Banhawy and Whitelaw [ 161, Shuen et al. [17], El- 
Kotb et al. [ 181, and Boyson and Swithenbank [ 191. 

Arguments persist among the researchers regarding 
the relative advantages and disadvantages of the Eui- 
erian and Lagrangian approaches. The Eulerian 
approach can easily incorporate droplet diffusion 
effects since the randomness of the particulate phase 
is accounted for by way of the formulation. However, 
in the prediction of practical sprays, a prohibitively 
large number of finite difference grids are required to 
resolve the spray shape near the fuel nozzle. In this 
approach, the complex coupled partial differential 
equations of droplet motion need to be solved along 
with the gas phase equations in an iterative manner. 
The computational cost increases significantly with 
the increase of droplet-size groups that might be con- 
sidered as distinctive phases. Finally, the continuum 
~presentation of the spray requires that the spray 
equations should be integrated throughout the 
domain even in the finite-difference cells that contain 
no droplets. 

Unlike the Eulerian approach, the Lagrangian 
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NOMENCLATURE 

B transfer number, equation (13) P dynamic viscosity of the carrier phase 
C concentration of the vapor in the carrier VP eddy viscosity of the droplets 

phase Vt kinematic eddy viscosity of the carrier 
c,,, c, ,, c,*, c,) coefficients in the turbulence phase 

model, equations (16) and (17) P material density 

Cu drag coefficient, equations (7) and (8) ok, Q, coefficients in the turbulence model 
d droplet diameter 0” coefficient in the droplet’s momentum 
D nozzle diameter equation 
F interphase friction coefficient, equation zd droplet dynamic relaxation time, 

(6) equation (19) 

9 gravitational acceleration r, turbulent eddy lifetime, equation (22) 
K kinetic energy of turbulence TL carrier phase Lagrangian time scale, 

1, eddy size, equation (21) equation (3 1) 
ti evaporation rate per droplet volume, rr residence time of the droplet in the eddy, 

equation ( 12) equation (23) 

“N 
droplet mass @ volume fraction, equation (5). 
number of droplets represented by the 
trajectory k 

P static pressure 
Subscripts 

0 conditions at the nozzle exit 
r distance in the radial direction 1 
Re Reynolds number, equation (9) 

carrier phase 
2 

SC Schmidt number of the carrier phase 
dispersed phase 

C 

Sh Sherwood number, equation (15) 
conditions at the jet centerline 

i ith direction 
ti, to the times when the droplet enters and L 

leaves the carrier phase control volume 
conditions at the droplet surface 

r radial direction 
At time the droplet takes to cross the carrier z axial direction. 

phase control volume 
u mean velocity of the carrier phase 

: 
fluctuating velocity of the carrier phase Superscript 

instantaneous velocity of the carrier k droplets in the size range kin the Eulerian 

phase formulation or the computational 

V mean velocity of the droplets droplet of diameter dk in the Lagrangian 

V instantaneous velocity of the droplets approach. 

A V control volume used in the carrier phase 
solution Abbreviations 

V fluctuating velocity of the droplets DT deterministic treatments 
Z distance in the axial direction. LDA laser Doppler anemometer 

LR mass flow rate of the droplets compared 
Greek symbols with that of air at the nozzle exit 

6 molecular mass diffusivity of the vapor r.m.s. root-mean-square of the velocity 
in air fluctuation 

& energy dissipation rate per unit volume ST stochastic treatments. 

approach exhibits no numerical diffusion. However, 
the droplet dispersion must be incorporated through 
an empirical diffusion velocity or more expensive but 
accurate Monte Carlo methods [lo]. In the stochastic 
or Monte Carlo method for calculating droplet tra- 
jectories, the instantaneous gas flow field must be 
modeled. Gosman and Ioannides [4] and Solomon et 
al. [20] split the isotropic turbulent gas field into two 
velocity components, mean (Q) and fluctuation (u,). 
During each droplet’s flight ui is randomly sampled 
and allowed to influence its motion. The cloud prop- 
erties such as number density, average velocity, and 

temperature are obtained by averaging over a stat- 
istically significant sample of droplets. 

The Monte Carlo method has the advantage of 
representing the direct effects of gas turbulence on 
droplet motion in a more realistic way. Shuen et al. 

[ 171 evaluated the Monte Carlo method for predicting 
the dispersed phase behavior by comparing the results 
with measurements of particle-laden jets. Their evalu- 
ation showed that this method provides good cor- 
relation with the data base. The Lagrangian approach 
requires interpolation between the finite difference 
meshes since the gas and droplet properties are 
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strongly coupled. Sirignano [21, 221 argued that the 
droplet properties should not be averaged over the 
numerical cell as suggested by Dukowicz [3] but rather 
a linear interpolation should be made. 

In this paper, the governing equations using both 
the Eulerian and Lagrangian approaches for handling 
turbulent evaporating sprays are presented. The tur- 
bulence model for two-phase flows [22] is used for 
both approaches. In the Lagrangian treatment, the 
Monte Carlo method for simulating droplet dis- 
persion is considered [4]. In the Eulerian treatment, 
the recent work of Mostafa and Elghobashi [6] on the 
droplet Schmidt number is adopted. The predictions 
are compared with the recent LDA spray measure- 
ments of Solomon et al. [20]. The results include 
distributions of the mean velocity, turbulence inten- 
sity and shear stress of the carrier phase, and the mean 
velocity of the droplets. Finally, a cost analysis of both 
Eulerian and Lagrangian approaches in predicting the 
considered data is made. 

2. GOVERNING EQUATIONS 

This section describes the assumptions and forms 
of the modeled equations to predict turbulent gaseous 
jet flows laden with vaporizing droplets using both 
the Eulerian and Lagrangian approaches for the spray 
and the Eulerian formulation for the carrier phase. 
The present study is restricted to the dilute spray 
regime where the droplet-droplet interaction is neg- 
ligible. This implies that the droplets are sufficiently 
dispersed so that droplet collisions are infrequent. 
The initial breakup of liquid sprays or jets is not 
considered but the computations start away from the 
nozzle exit where individual droplets have formed. 
The droplets are assumed spherical as they undergo 
phase change. The mean flow is steady and isothermal 
and the material properties of the two phases are 
constant. Vaporization is assumed to be driven by the 
vapor concentration gradient. 

In the Eulerian treatment, the continuous size dis- 
tribution of the droplets is approximated by a finite 
number of size groups [23]. Each group is char- 
acterized by average quantities obtained from the 
solution of the conservation equations of mass and 
momentum. 

The equations of the carrier phase and the droplets 
are coupled primarily by two mechanisms, mass and 
momentum exchange. The momentum exchange is 
due to both the aerodynamic forces exerted on the 
droplets and the momentum growth resulting from 
the relative velocity between the generated vapor and 
the surrounding gas [23]. The turbulent characteristics 
of the carrier phase are described by the two-equation 
turbulence model developed by Mostafa and Mongia 
[2]. The derivations of the governing equations are 
given by Mostafa and Elghobashi [6] and Mostafa 
and Mongia [2]. These equations, in the axisymmetric 
cylindrical form, are presented in the next section for 
application to a round jet flow. 

2.1. Carrier phase equations 
The mean continuity equation of the carrier phase 

is 

(1) 

The right-hand side of equation (1) represents the 
source term due to the droplet evaporation and the 
sink term in the continuity equation of the droplets 
(equation (26)). 

In all governing equations, the comma-suffix 
notation indicates differentiation with respect to the 
spatial coordinates z or r. 

The mean momentum equation of the carrier phase 
in the axial (z) direction is 

~,~Jz,zi-~,~JJz,r = -f’,-~@Vk+tiVJz- Vr) 

+ ~(p~rvtU,,rL. (2) 

The mean momentum equation of the carrier phase 
in the radial (r) direction is 

PI~*~r,+Pl~JJr,r = -p., 

-~@“(Fk+rkk)(U,--V~)- i?(rK),,. (3) 
k 

The kinematic eddy viscosity of the carrier phase is 
given by 

In the Eulerian approach, @ is obtained from the 
solution of the continuity equation of the droplets in 
the group k while in the Lagrangian approach it is 
given by 

2.2. The interphase friction factor Fk 
In the governing equations set, the drag force is 

expressed in terms of the interphase friction 
coefficient, Fk. In general Fk is given by 

Fk = $,*,lu-vk~. 

Mostafa and Elghobashi [5] pointed out that the 
drag coefficient at low evaporation rates can be cal- 
culated from that of the standard experimental drag 
curve of a solid sphere with the same diameter. This 
curve is represented by [25] 

C”, = (24/Re’)(l +0.1315[Rek]0~s2-0~05”), 

0.01 < Rek < 20 (7) 

C”, = (24/Rek)(l+0.1935[R6]0~6305), 

20 < Rek < 260 (8) 

where w = log,, Rek and the droplet Reynolds num- 
ber is based on the absolute value of the total instan- 
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taneous velocity 

Rek = p,]U-Vk]dk/~, 

]U] = Jx u: 

]Vk] = Jc(v;)‘. 

2.3. Mass transfer rate mk 

(9) 

(10) 

(11) 

The evaporation rate or the change rate of droplet 
diameter is determined by the physicochemical evap- 
orative process and the condition of the turbulent 
surrounding flow. If changes in the droplet size and 
flow conditions occur slowly, the time derivatives in 
the differential equations governing the evaporation 
rate may be neglected and quasi-steady-state evap- 
oration relations could be applied [6]. 

For quasi-steady-state evaporation of a spherical 
droplet suspended in a moving stream, the mass evap- 
orated per unit time and unit droplet volume is 

12+, tik =Pln(l+B)Shk. 
(dk)’ 

(12) 

When evaporation occurs due to the concentration 
gradient, the transfer number is given by 

B = (CL-C)/(l -CL) (13) 

where C, CL are the concentrations (defined as the 
ratio of the evaporated mass within a control volume 
to the mass of the carrier phase in the same volume) of 
the evaporating material at the free-stream conditions 
and at the droplet surface, respectively. C is obtained 
from the solution of the following modeled con- 
centration transport equation : 

+C&+zk(1 -C) (14) 
k 

where 0, is a coefficient of value 0.7 as given by Spald- 
ing [26]. 

The Sherwood number in equation (12) is given by 
the semiempirical formula of Ranz and Marshall [27] 
as follows : 

rhk 
Shk = ndkG(CL - C) 

= 2+0.55Rek”‘S~“~ (15) 

1 Schmidt where SC = v,/6 is the evaporated materia 
number. 

2.4. The turbulence model 
The turbulence kinetic energy equation 

given by 
W) PI is 

-x2K(Fk+tik)Q l- 
k 

‘( A). (16) 

The turbulence energy dissipation rate equation (s) is 
given by [2] 

. (17) 

The values of the coefficients appearing in equations 
(16) and (17) are listed in Table 1. 

2.5. Droplet equations : Lagrangian approach 
The equation of motion of each computational 

droplet, individually labeled by superscript k, in the 
ith direction is given by 

dV; (Ui - Vfr) 
-= 
dt k +a 

Td 

where 

?i = 
4dkp, 

3C;p,lU-Vkl’ 

(18) 

(19) 

The instantaneous carrier phase velocity is given by 

l-Ii = ui+ui. 

where U, is determined from the solution of the mean 
flow equations of the carrier phase and ui is chosen 
randomly from an isotropic Gaussian distribution 
with mean square deviation (2/3)K where K is the 
turbulent kinetic energy of the carrier phase. 

The droplet diameter in equation (18) is calculated 
from the solution of the mass transfer balance (equa- 
tion (12)). The Reynolds number used in the solution 
of equations (12) and (18) is based on the instan- 
taneous velocities for both the carrier phase and the 
droplets. 

The droplet location at any instant of time is given 

by 

For each droplet, after a turbulent correlation time 
(T), a new value for ui is chosen [4]. r is the minimum 
of two time scales, one being a typical turbulent eddy 
lifetime (7,) and the other the residence time of the 
droplet in the eddy (23. r, and r, are determined under 
the assumption that the characteristic size of the ran- 

Table 1. Coefficients of the turbulence model 

1.0 K-E:’ 1.3 1.44 K-E:’ 2.0 
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domly sampled eddy is the dissipation length scale, Z,, 
while given by 

1, = c;~~K~‘~/E. (21) 

The eddy lifetime is then obtained as 

r, = U~,l. (22) 

The residence time of the droplet in the eddy, that 
is, the time for a droplet to pass through that eddy, is 
estimated as 

Hence 

z, = IJlU-V]. (23) 

r = min (t., z,). (24) 

The droplet equation of motion is integrated over 
as many interaction times as required for the droplet 
to traverse the required distance. 

If a sufficiently large number of droplets is tracked 
in this way, the averaged behavior should represent 
the cloud and yield the effects of the turbulence of the 
carrier phase on the droplet motion. 

2.6. Droplet equation : Eu~er~~~ a~p~~~c~ 
The momentum equation for droplets having an 

average diameter dk in the kth diameter range in the 
axial (z) direction is [23] 

p@ V-r v:,= + p&k v; YE,, = - 6r”P,Z 

+J+@V,-- 0+ s(~~~~~~,z~~“:;),~+!~~-~~)~. 

(25) 

The mean continuity equation of the kth group is 
written as 

- $ (rv”,Q’& = -tikQk. (26) 

The mean global continuity is 

@, +C@ = 1. (27) 
k 

In equation (25) 0, is a coefficient of value 0.7 as 
given by Melville and Bray [29]. 

2.7. Turbulent d@sivity of liquid droplets 
The turbulent di~usivity of liquid droplets (vi) is 

evaluated by introducing the droplet Schmidt number 
4 defined as 

+$. (28) 

Mostafa and ~lghobashi [6] introduced an 
expression for calculating or, of particles having a con- 
stant drift velocity. At a dispersion time greater than 
the Lagrangian time scale of turbulence, this 
expression is given by 

I$ = (1+0.3lp-v~]2/[~]‘)-“’ (29) 

where the r.m.s. of the droplet velocity is given by 

(3)’ 1 

u2 - 1 +z& (30) 

where 

ZL = 0.3X/&. (31) 

The coefficient 0.3 in equation (29) was optimized 
based on the comparison of calculations of the lateral 
dispersion of solid particles and measurements of 
Snyder and Lumley [30] and Wells and Stock [31]. 

3. NUMERICAL SOLUTION 

The governing equations of both the carrier phase 
and the droplets using the Eulerian approach are 
solved numerically using the marching finite-differ- 
ence solution procedure developed and described in 
detail by Spalding [32, 331. It was concluded that 35 
cross-stream grid nodes yield grid-independent 
results. 

In the Lagrangian approach, the ordinary differ- 
ential equations governing droplet motion are solved 
using a second-order finite-difference algorithm. The 
total number of computational droplets was pro- 
gressively increased until only 3% difference in the 
particle flow properties has accrued when using the 
optimized number and the next higher one. Accord- 
ingly, 4200 and 6000 computational droplets are used 
for the stochastic calculations of cases 1 and 2 while 
280 droplets are computed when a comparison is 
made between the predictions of case 1 using the deter- 
ministic and stochastic methods. 

The solution procedure and the boundary con- 
ditions are described in detail in refs. [2, 231 and will 
not be repeated here. 

4. THE FLOW CONSIDERED 

Solomon et al. [20] measured the carrier phase 
properties using a turbulent round jet with a laser 
Doppler anemometer (LDA), the droplet size and 
velocity using a shadow-photography technique, and 
the liquid mass flux with an inertial impaction method. 
An air-atomizing nozzle of 1.194 mm o.d. (D) was 
used to generate a Freon-l 1 spray. Detailed measure- 
ments were made on the two-phase jet with two load- 
ing ratios (LR) = 7.71 and 15.78. LR is defined as the 
mass flow rate of Freon-l I liquid at the nozzle exit to 
that of the nozzle air. The flow conditions for these 
two mass loadings will be referred to as cases I and 
2, respectively. 

Solomon et al. f20] measured the radial profiles of 
the mean and r.m.s. velocity, as well as the Reynolds 
stress at four stations, z/D = 50, 100, 250, and 500. 
The model calculations were started with the available 
measured profiles at z/D = 50. Mostafa [23] sum- 
marized the initial conditions needed for the com- 
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putation for the two loading ratios using the Eulerian 
approach. The initial turbulence dissipation rate (a) 
profile is calculated from the measured turbulent shear 
stress and the axial velocity gradient. The initial vol- 
ume fractions of the different groups (seven for case 
1 and ten for case 2) are obtained from the measure- 
ments of the droplet mass flux, velocity distribution, 
and relative number density. The Freon vapor con- 
centration profile C is obtained from the mixture frac- 
tion measurements and the state relations given by 
Solomon et al. [20]. 

SIZE EXPERIMENT PREDICTION 
n=1 . 

2 63 ___-- 

3 m -.- 

4 0 _._.- 
5 t - ..- 

6 x -.._.._ 
7 0 -...- 

8 l ” _ 

8 0 _....- 

10 l _ ._. 

Gas _.__.... 

10 

i (a) LAGRANGIAN APPROACH 

The analysis of Solomon et al. showed that the 
droplet temperature at z/D = 50 is equal to Freon’s 
saturation temperature, 240.3 K. In the present cal- 
culations it is assumed that the temperature of the 
carrier phase is equal to the surrounding air tem- 
perature (300 K) while the droplet surface tem- 
perature is 240.3 K. At these conditions, the density 
of the liquid Freon-l 1 is equal to 1518 kg m- 3, and 
the vapor concentration at the droplet surface is equal 
to 0.292. The carrier phase temperature profile mea- 
sured at various axial stations (250 < z/D < 500) with 
a bare wire chromel-alumel thermocouple showed 
a maximum temperature difference of only 20°C. The 
evaporated mass is estimated [20] to be only 1.5-3% 
of the entrained air in cases I and 2, respectively. 
Therefore, constant properties are assumed for both 
phases in the present study. 

01 t 
0 200 400 500 

r/D 

(b) EULERIAN APPROACH 

Ol I 

0 200 400 600 
z/u 

5. RESULTS AND DISCUSSION FIG. 1. Axial distribution of the mean centerline velocities. 

In this section, the predictions using the Eulerian 
and Lagrangian approaches are compared with the 
measured distributions of the mean axial velocities of 
the gas and droplets and the turbulence kinetic energy 
and shear stress of the gas. The computational 
efficiencies for handling the spray using the two 
approaches are compared for a loading ratio of 7.71. 

CASE EXPERIMENT PREDICTION 

1 . - 

2 . -- 

20- 

EULERIAN LAGRANGIAN ’ 

15- 

Figure 1 shows the measured and predicted cent- 
erline axial velocity dist~bution of the carrier phase 
and those of the ten groups (n = 1,2,. I , 10) for 
LR = 15.78. Here n = 1 (n = k in the Eulerian 
approach) refers to the group that has the largest 
diameters, and n = 10 the smallest ones. It can be seen 
from this figure that the velocity difference between 
the carrier phase and the largest diameter group is 
greater than that of any other group. This behavior is 
attributed to the balance between the inertia of the 
droplet and the momentum exchange force. The iner- 
tia terms are proportional to (&)3 [6] whereas the 
momentum exchange force is proportional to the 
droplet diameter with an exponent ranging from 1 to 
1.7 depending on the droplet Reynolds number. By 
increasing the droplet size, the inertia becomes much 
greater than the momentum exchange forces; as a 
result the relative velocity between the droplets and 
the carrier phase (UZ - Vi) increases. This figure 
shows that the Eulerian approach performs better 
in correlating the droplet mean velocities than the 
Lagrangian approach. 

Uof U, 
IO - 

5- 

zm 

FIG. 2. Axial distribution of the gas mean centerline velocity. 

Figure 2 shows the measured and predicted cen- 
terline distribution of the mean axial velocity of the 
carrier phase for the two mass ioadings. It can be seen 
from this figure that the increase of the centerline 
velocity of the carrier phase compared with the single- 
phase value [34] is proportional to the mass loading 
ratio. This behavior is caused by the droplet mean 
momentum transfer and the effect of the droplets on 
the carrier phase turbulence quantities. Due to the 
carrier phase turbulence modulation caused by the 
droplets there is a reduction in the turbulent diffusion 
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CASE EXPERIMENT PREDICTION 

1 l - 

2 A -- 

(b) z/D = 500 

EULERIAN 

“z’“z,c 

FIG. 3. Radial distribution of the gas mean axial velocities. 

coefficient of the carrier phase compared with that of 
the single phase. 

Figure 3 illustrates the radial profiles of the nor- 
malized mean axial velocities of the carrier phase at 
250 and 500 nozzle diameters from the exit plane for 
both loadings. It can be seen from this figure that 
the jet width decreases with the increase of the mass 
loading ratio. 

The influence of the loading ratio on the carrier 
phase turbulence energy and shear stress is presented 
in Figs. 4 and 5. The reduction in the turbulence 
energy or the increase in the dissipation rate of that 
energy is mainly caused by the turbulent correlation 
between the fluctuating relative velocity and that of 
the carrier phase. These two figures show that farther 
downstream from the nozzle exit the turbulence quan- 
tities asymptotically approach the single-phase jet 
values [34]. This is a consequence of the continuous 
diminution of the droplet volume fraction due to 
evaporation. Again it can be seen that the Eulerian 
approach gives better correlation with the data than 
the Lagrangian approach. 

The predictions of the axial distribution of the 
Sauter mean diameter at the jet centerline compared 
with the experimental data are displayed in Fig. 6. 
Both approaches give good agreement with the data. 

K’“?,, 

CASE EXPERIMENT PREDICTION 

1 l - 

0.10 

r’ 

A -- 

ia1 z/D=250 

0.05 

(b) r/D=500 

0.05 

0 
-0 0.1 0.2 

r/z 

FIG. 4. Radial distribution of the gas kinetic energy of tur- 
bulence. 

The superiority of the Eulerian approach in the 

present study over the Lagrangian approach is in 
agreement with the observations of many other pre- 
vious workers as pointed out by Mostafa and Elgho- 
bashi [6] and Durst et al. [35]. This might be due to 
the fact that the Eulerian approach is conceptually 
more correct since the randomness of the dispersed 
phase is accounted for by way of the formulation. 

It is noteworthy that the present observations are 
limited by the flow conditions of the data considered 
for comparisons and should be taken carefully for 
some other two-phase flow conditions. For instance, 
the parabolic nature of the flow minimized computer 
storage and numerical diffusion, both of which could 
be considered as drawbacks of the Eulerian approach. 

In concluding this section, attention is drawn to the 

many advantages of the Lagrangian approach that we 
did not cover in the present study. As indicated by 
Sirignano [22], this approach is very useful when one 
is interested in resolution on a scale smaller than the 
average distance between droplets. It also poses no 
problems in handling the boundary conditions at a 
wall (rebounds or sticks) provided droplet rebound 
information is available [lo]. Moreover, it is very 
appropriate to acquire more understanding and 
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CASE EXPERIMENT PREDICTION 

1 a - 

2 A -- 

(a) z/D=2SO 

0 

0 0 0 0.1 0.2 

r/z 

FIG. 5. Radial distribution of the gas shear stress. 

CASE EXPERIMENT PREDICTION 

1 . - 

2 . __ 

LAGRANGIAN EULERIAN 

-i -J-J= 

SMD/,&m) 

IL-&_ 0 200 

Z/D 

FIG. 6. Axial distribution of the Sauter mean diameter 
@MD) along the jet centerline. 

insights of the interaction between droplets and sur- 
rounding turbulent flow [36]. 

To afford three-dimensional gas turbine combustor 
calculations, many investigators have used the deter- 
ministic treatment instead of the more accurate stoch- 
astic treatment. In the deterministic treatment, the 
droplet dispersion due to gas turbulence is neglected 
and a significantly fewer number of trajectories is 
calculated. Similarly in the Eulerian approach, one 

could use a one-size formulation instead of the multi- 
size treatment. 

Table 2 compares the carrier phase centerline mean 
axial velocity and kinetic energy of turbulence using 
the deterministic (DT) and stochastic treatments (ST). 
This table indicates a significant error in the pre- 
dictions resulting from using DT in the modeling of 
the dispersed phase. The centerline mean velocity of 
the carrier phase becomes higher than the data by 
about 20%. This behavior could be attributed to com- 
pletely ignoring the droplet dispersion in the DT 
which leads to more confinement of the droplets in 
the inner region of the jet. Due to this confinement 
and the higher inertial forces of the droplets, their 
centerline velocity decays with the downstream dis- 
tance at a slower rate than that of the carrier phase (see 
Fig. 1). As a summary, ignoring the droplet dispersion 
leads to less spreading of the spray and higher momen- 
tum transfer to the carrier phase in the inner region 
of the jet. 

It should be mentioned that the present findings of 
the importance of droplet dispersion in the modeling 
of turbulent two-phase flows have not been observed 
by Mostafa and Mongia [2]. This could be attributed 
to their flow conditions where the ratio between the 
relative mean velocity and the carrier phase r.m.s. 
velocity was very high. Mostafa and Elghobashi [6] 
pointed out that if this ratio is much greater than 
unity, the droplet will move from one eddy to another 
and the dispersion coefficient takes on an asymptotic 
form inversely proportional to the mean relative vel- 
ocity. In such conditions, the droplet dispersion could 
be neglected and the DT might be used without sig- 
nificant errors. But due to the fact that the relative 
mean velocity diminishes with the downstream dis- 
tance from the injector distance, the use of the DT in 
the modeling of turbulent evaporating sprays could 
lead to unrealistic results as demonstrated in Table 2. 

Table 3 compares the centerline calculations using 
both one-size and multi-size (seven sizes) Eulerian 
treatments. The maximum difference due to the use 
of either treatment is 0.6 and 6% in the carrier phase 
mean velocity and kinetic energy of turbulence, 
respectively. This close agreement between the two 
treatments reflects that the effects of a spray of narrow 
size range similar to the considered case (17.5-52.5 
pm) on the carrier phase could be simulated using 
average spray quantities. It is noteworthy that the 
one-size treatment gives only the global spray prop- 
erties and not the detailed quantities which might be 
needed in many engineering applications. This 
explains the tendency of preferring the multi-size 
treatment in predicting two-phase flows over the one- 
size treatment. 

A typical comparison between the different treat- 
ments for the spray in regard to machine time and 
memory requirements is presented in Table 4. This 
table shows that the stochastic treatment is expensive 
compared with other treatments. The cost of using 
the deterministic treatment with 280 trajectories is 
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Table 2. The effect of the deterministic (DT) and stochastic (ST) Lagrangian treat- 
ments on the predicted jet centerline values at LR = 7.71 

Axial distance, 
zlD 100 200 300 400 500 

Ual UZ,C DT 3.468 5.811 1.790 9.656 12.62 
ST 3.505 6.085 8.848 11.878 14.794 

4 u& DT 0.0345 0.0519 0.0569 0.0619 0.0798 
ST 0.0342 0.0~1 0.0727 0‘0810 0.0849 

Table 3. The effect of one-size (OS) and multi-size (MS) Eulerian treatments on the 
predicted jet centerline values at LR = 7.71 

Axial distance, 
rlD 

IJLll UZ,C 

Kl I& 

100 200 300 400 500 

OS 3.580 6.555 9.862 13.190 16.496 
MS 3.580 6.502 9.802 13.163 16.496 

OS 0.0371 0.0689 0.0825 0.0879 0.0898 
MS 0.0375 0.0677 0.0810 0.0873 0.0904 

Table 4. IBM 3081 machine requirements using different spray approaches for 
predicting case 1 (LR = 7.71) 

Approach 
Eulerian Lagrangian 

One-size Multi-size Deterministic Stochastic 

Central memory 
storage (KB) 

Central memory 
time (min) 

340 1388 304 1292 

0.37 1.721 0.444 4.423 

quite comparable to the use of the one-size for- investigated to obtain a balance between its high cost 
mulation in the Eulerian treatment. and potential improvements, 
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SUR LA MODELISATION DES BROUILLARDS TURBULENTS EN EVAPORATION: 
APPROCHES EULERIENNE ET LAGRANGIENNE 

R&sum&On decrit des modtles mathtmatiques recemment developpes pour des brouillards turbulents qui 
s’evaporent. On discute les merites respectifs des approches selon Euler et Lagrange pour traiter de la phase 
disperste. Ces deux approches sont tvalutes en liaison avec des donnees experimentales pour des brouillards 
volatils dilutes (dans la region z/D > 50) produits par un injecteur-atomiseur a air dans un environnement 
au repos. Les rtsultats montrent que les deux approches sont satisfaisantes pour prtdire les configurations 
principales de ce type d’tcoulement; neanmoins l’approche eulerienne est meilleure. L’ignorance des effets 
de la turbulence sur le mouvement des gouttelettes conduit a des erreurs significatives quand la vitesse 
relative moyenne devient comparable a la moyenne quadratique de la fluctuation de vitesse de la phase 
porteuse. Le traitement eulerien monodimensionnel conduit a des resultats tres comparables a ceux du 
traitement multidimensionnel quand le domaine de taille de gouttelette n’est pas tres ttendu. Finalement, 
l’analyse du cout pour les deux approches montre que l’utilisation de la technique de Monte Carlo pour 
simuler la dispersion des gouttelettes est nettement plus onereuse que le traitement eulerien 

multidimensionnel. 
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MODELLBILDUNG FtiR TURBULENTE, VERDAMPFENDE SPRtiHSTRt)MUNGEN : 
VERGLEICH ZWISCHEN EULER- UND LAGRANGE-ANSATZ 

Zusammenfassung-Es wird iiber neue mathematische Modelle fiir turbulente, verdampfende Sprtih- 
stromungen berichtet. Die Vorztige der Euler- und Lagrange-Ansltze bei der Beriicksichtigung der zer- 
stlubten Phase werden diskutiert. Diese zwei Andtze werden ausgewertet und mit veroffentlichten Daten 
fur verdampfende, verdiinnte Spriihstromungen verglichen (fiir z/D 2 50), die von einem Luftzerstluber 
in einer ruhenden Umgebung erzeugt wurden. Die Ergebnisse zeigen, da13 beide Ansltze zur Berechnung 
der Haupteigenschaften dieses Striimungstyps geeignet sind ; der Euler-Ansatz hat jedoch Vorteile. Die 
Vernachllssigung der Turbulenzeffekte bei der Tropfenbewegung fiihrt zu schwerwiegenden Fehlern, wenn 
die mittlere Relativ-Geschwindigkeit in derselben Griigenordnung liegt wie der quadratische Mittelwert 
der Geschwindigkeitsschwankung der Tragersubstanz. Bei Beriicksichtigung nur einer Tropfengrdge liefert 
der Euler-Ansatz vergleichbare Ergebnisse gegeniiber der Beriicksichtigung mehrerer Tropfengrogen, wenn 
der Bereich der TropfengroBe nicht zu weit ist. SchlieBlich zeigt eine Kostenanalyse fiir die zwei Ansltze, 
da13 die Monte-Carlo-Methode bei der Simulation der Tropfenzerstlubung noch kostenaufwendiger ist 

als der Euler-Ansatz mit der Beriicksichtigung vieler Tropfengrogen. 

OTHOCMTEJIbHO MOAEJIHPOBAHIHI TYPBYJIEHTHUX MCIIAPRIOB@IXC5I CTPYti: 
COI-IOCTABJIEHHE OI-IACAHHI? JIAI-PAHKA M %iJIEPA 

AllElOTalVll-aaH OIlHCaHBe HeAaBHO ll&WlAO~eHHbIX MaTeMaTWIeCKIiX MOAenei Typ6yJleHTHblX 

llcnapnIouuixcK c-rpyii. IlpoeeneHo conocrasnewie @O~M~JIH~OBOK 3finepa r4 JIarpasra, wnonbsye- 

MbIXAnllonHcaHHnAacneprHpymIueii~asbI.BbInonHeHaoqeHKa 3TSiX~OpM)UlHpOFIOK HaoCHOBeHMexO- 

UUiXCK 3KClIepHMeHTaJlbHbIX AaHHblX I-IO &iCllapeHHlO XUiAKOCTHbIX CTpyii (B o6nacTB z/D& 50), 
pacnbrnnehfbIx 803nymiofi +0~y~~0i? B HenoABsimHym orpyxcamuym CpeAy. PesynbTaTbl noKa3b*- 

BalOT, YTO o6a ITOAXOAa lIO3BOnXIOT yCneIlIH0 paCCWTaTb OCHOBHbIe XapaKTepllCTHKH 3T,OrO BHAa 

TeSeHHR,OAHaKO @OpMynLipOBKa %nepa KBnReTCR donee pe3ynbTaTEfBHOii. HaiineHo,uTO npeHe6peme- 
HHe BnBIlHBeM TYP6)‘AeHTHOCTH Ha JIBUXeHHe KaneJIb tIp&iBOII.HT K CyLUeCTBeHHbIM nOrpeX,HOCTKM B 

cnynae, rtorna 3HaxceHUe CpeAHeii OTHOCHTenbHOfi CKO~OCTH CTaHOBHTCK COIW.?TaBHMOfi c ee CpeAH.3 

KBi?ApaTWiHblM 3HaSeHEieM. PesynbTaTbI aHam3a, OCHOBaHHOrO Ha AonyuemiH 3finepa 0 Hanwfm 

9acTm oAHor0 pasMepa,xopomo cornacymTcnc pe3ynbTaTaMH MHoropa3MepHoro nonxona, ecnu ana- 
na30H pa3wepoB qacTw He 0veHb rsenm. A HaKotieu, aHan CTOHMOCTH pacqeToB ~TBMW MeTonaMH 

nOKa3bIBaeT,'iTO MeTOA MoHTe-Kapno,&iCnOnb3yeMbIi AJIK MOAeJIHpOBaHEfK AWIlepCliH Kanenb,OKa3bI- 

BaeTCIi na~e6oneeAOpOrOCTOnuuiM,~eM MHOrOpa3MepHbI6MeTOLI 3finepa. 
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